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Abstract 

The adiabatic decay of different types of internal wave solitons 

caused by the Earth’ rotation is considered within the framework 

of the Gardner–Ostrovsky equation. The governing equation 

describing such processes includes quadratic and cubic nonlinear 

terms, as well as the Boussinesq and Coriolis dispersions. It is 

shown that at the early stage of evolution solitons gradually 

decay under the influence of weak Earth’ rotation. The 

characteristic decay time is derived for different types of solitons. 

Introduction  

The model Gardner–Ostrovsky (GO) equation, was derived for 

the description of long internal waves [7, 9]:  
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where c is the velocity of dispersionless linear waves,  and  

are the coefficient of quadratic and cubic nonlinearities, 

respectively, and  and  are the coefficients of small-scale 

(Boussinesq) and large-scale (Coriolis) dispersion, respectively. 

The variable u(x, t) describes a perturbation of an isopycnal 

surface (the surface of equal density) from its rest position. The 

coefficients of equation (1) are well known and can be found 

both for waves in continuously stratified fluid and for interfacial 

waves in two-layer fluid (see, e.g., [1, 6, 8]). 

Equation (1) is apparently non-integrable and even its stationary 

solutions are unknown. In the meantime, in the absence of 

rotation the GO equation reduces to the well-known and 

completely integrable Gardner equation [11, 12]. The latter 

equation has soliton solutions whose shape depends on the 

amplitude and sign of the cubic coefficient 1. It is a matter of 

interest to study the influence of weak rotation on the dynamics 

of quasi-stationary Gardner solitons in application to large 

amplitude internal waves. Such waves are often observed in 

shallow coastal regions where they may have an influence on the 

human activity, engineering constructions off-shore petroleum 

exploration, production and sub-sea storage activities, etc. 

In this paper we present asymptotic solutions for the slowly 

varying Gardner solitons of internal waves due to influence of 

Earth’ rotation. We show that the rotation leads to soliton 

terminal decay; we estimate the life time of Gardner solitons and 

show that the character of soliton decay is different for the bell-

shaped and table-top solitons having plane maximums. 

To obtain an asymptotic solution to the GO equation (1) it is 

convenient to present it in the dimensionless form using the 

normalized variables: 
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where U0 is the characteristic amplitude, and L0 is the 

characteristic width of the initial perturbation. In new variables 

equation (1) is: 
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(3) 

where  = 1U0 /,  =  L0
2/(U), and Ur =  U0 L0

2/  is the 

well-known Ursell parameter in the theory of shallow water 

waves (see, e.g., [2]).  

Equation (1) should be augmented by the initial condition. Here 

we are interested in the evolution of solitary waves, therefore we 

assume that the initial condition can be presented in terms of a 

pulse-type function: u(0, x) = U0 F (x /L0), where a dimensionless 

function F() has a unit height and width. In the dimensionless 

variables, the initial condition for equation (3) takes a simple 

form (0, ) = F ( ).  

In the typical oceanic conditions the coefficients of equation (1) 

are such that  < 0,  > 0,  >0, whereas the coefficient 1 may 

be both positive and negative (see, e.g., [1]). Therefore the 

dimensionless coefficient  may be also both positive and 

negative, whereas the parameters Ur and  in equation (3) are 

always positive for oceanic waves.  

Dynamics of Gardner solitons when  < 0 (1 < 0) 

We start our analysis with the most typical oceanic case when 1 

is negative (and hence  is negative as well). For the near-surface 

pycnocline an initial perturbation is a soliton of negative polarity, 

whereas for the near-bottom pycnocline the initial soliton has a 

positive polarity [1].  

When  = 0, equation (3) reduces to the well-known Gardner 

equation. One of the exact stationary solutions to this equation is 

the so-called “fat” soliton [1, 9]: 
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where 0 ≤ B ≤ 1, and all other parameters can be presented in 

terms of B:
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The amplitude of the Gardner soliton is determined by the 

formula  
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The shape of the Gardner soliton varies with B from the bell-

shaped KdV soliton, when B  1, to the table-top soliton, when 

B  0. In the KdV limit (B  1) solution (4) reduces to 
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If   0, but sufficiently small,   << 1, then solution (4) is no 

longer valid. However, if the Gardner soliton is structurally 

stable, then under the influence of a small perturbative term in 

the right-hand side of equation (3) it may experience just a 

gradual adiabatic variation with time, keeping the shape and the 

relationships between other parameters as per equations (5) and 

(6) at any time. Then the evolution of soliton parameters with 

time can be calculated with the help of the perturbation theory 

described in many papers (see, e.g., [3, 7]). Here we apply a 

similar approach to calculate time variation of GO soliton shape 

and parameters under the influence of fluid rotation. 

Multiplying equation (3) by  and integrating it with respect to  

in the infinite limits, we obtain the energy balance equation:  
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Substituting here soliton solution (4), we derive the equation for 

the parameter B: 
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After separation of variables the analytical solution to this 

equation can be presented in the implicit form in the quadrature. 

In the KdV limit (B0  1,   0, Ur  12) solution to equation 

(9) can be found in the explicit form: B = 1 – (1 – B0)(1 – )2. In 

terms of soliton amplitude this solution is: U = U0(1 – )2 [3–6, 

9]. As follows from this formula, a soliton completely vanishes in 

the finite time ext = 1/ , but actually it transfers after long-term 

evolution into the envelope soliton [4, 5]. In another limit, when 

B0  0 (  –1, Ur  24), solution of equation (9) again 

simplifies and in terms of soliton amplitude reduces to U = U0 [1 

– 2 exp(–1/)]. According to this formula, soliton ampli-tude 

turns to zero at ext = 1/( ln 2). Hence, the extinction time of the 

table-top soliton is greater than the extinction time of the KdV 

soliton by the factor of 1/ln 2 ≈ 1.443. 

In general, equation (9) can be solved numerically and then the 

solution can be presented in terms of soliton amplitude U(), 

velocity V(), front width (), and the total soliton width D(). 
Time dependence of soliton amplitude is shown in figure 1 for 

different initial values of the parameter B.  

The asymptotic dependence for the KdV soliton completely 

coincides with the numerical solution shown in figure 1 by line 1 

for B0 = 0.9999. Another asymptotic solution corresponding to 

the limiting case of B0 = 0 and  = –1 is presented in figure 1 by 

dashed line, whereas dotted line next to line 3 shows the 

asymptotic solution at finite value of B0 = 10–4. In the latter case 

there is a good agreement between the asymptotic and numerical 

solutions if soliton amplitude is not too small. 

As one can see from these graphics, soliton amplitude 

monotonically decrease with time independently of the initial 

value of the governing parameter B. At a certain time, the 

amplitude formally vanishes within the framework of the 

adiabatic theory. The corresponding extinction time has been 

presented above for two limiting case of the KdV soliton (B0  

1) and table-top soliton (B0  0). In general, the extinction time 

can be found from equation (9) when B turns to unity; then we 

have:  
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Figure 1. Soliton amplitude against time in normalized variables. Line 1: 

B0 = 0.9999 (KdV soliton); line 2: B0 = 10–2 (“fat soliton”); solid line 3: 

B0 = 10–4 (table-top soliton). Dotted line next to line 3 represents the near- 

asymptotic dependence when B0  0 for B0 = 10–4. Dashed line 4 

displays the asymptotic dependence in the limiting case when B0 = 0 and 

 = –1. 

As follows from this formula, the extinction time goes to infinity 

when B0  0 (i.e. for table-top solitons), whereas according to 

the rough estimate it attains a finite value ext = 1/ln 2  1.443. 

The minimum value of the extinction time realizes for the KdV 

soliton.  

The soliton velocity is related to its amplitude; the dependence of 

V() is shown in figure 2 for the same three initial values of the 

parameter B as in figure 1.  
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Figure 2. Soliton velocity against time. Line 1: B0 = 0.9999 (KdV 

soliton); line 2: B0 = 10–2 (“fat soliton”); solid line 3: B0 = 10–4 (table-top 

soliton). Dotted line next to line 3 corresponds to the asymptotic 
dependence for the soliton amplitude with B0 = 10–4, and dashed line 4 

corresponds to the asymptotic dependence for the soliton amplitude with 

B0 = 0 and  = –1. 

Figure 2 illustrates that the soliton velocity decreases 

monotonically with time independently of the initial value of the 

governing parameter B. The traversed path for the KdV soliton 

until its disappearance can be easily calculated: 
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In the case of the table-top soliton with B0 = 10–4 the total 

traversed path can be evaluated numerically; the result is Stts /L0  

0.142/. For the limiting case of the table-top soliton with B0 = 0 

the total traversed path can be calculated analytically; the result is 

Slim /L0 = –4Ei(– ln 4)/3  0.159/, where Ei (x) is the exponential 

integral function of x. 

The width of the soliton front () and the total soliton width can 

be also found in terms of the parameter B(). The total soliton 

width D can be defined as the distance between the soliton front 

and rear slopes at the level of half of soliton amplitude, i.e. when 

(D, ) = U/2 for any instant of time [1]. From equation (4) we 

derive: 
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In the course of soliton propagation, the width of soliton front 

monotonically increases with time, whereas the behaviour of the 

total soliton width may be non-monotonic depending on the 

initial value of the parameter B. The minimum value of D/L0 

approximately equals to 4.746(–6 /Ur)1/2 and occurs at B  

0.451; this value is attained at a certain time if the initial soliton 

amplitude is large enough and B0 < 0.451. Thus, a small-

amplitude soliton with B0 > 0.451, whose initial width D > Dmin, 

decays in time in the course of propagation, and its width 

monotonically increases with time, whereas large-amplitude 

soliton with B0 < 0.451, whose initial width D > Dmin, first 

shrinks in time in the course of propagation, attains the minimal 

width Dmin, and only after that expands with time.  

Dynamics of Gardner solitons when  > 0 (1 > 0) 

The physical situations when the cubic nonlinear coefficient 1 is 

positive are also possible in real oceanic conditions. Soliton 

solution of equation (3) with  = 0 and  > 0 can be described by 

the same equation (4) where now B2 > 1. In fact, in this case we 

have two families of solitons: one for B  1 and another for B ≤ –

1. Plots of soliton profiles in terms of  against  = (Ur/6)1/2 

are shown in figure 3 for several values of parameter B. 

When B  1+, the soliton (4) reduces to the KdV soliton of 

infinitely small amplitude, which eventually vanishes when B 

turns to unity. When B increases, the soliton amplitude is also 

increases and it becomes narrower. 

For the negative B solitons are of a negative polarity. Their 

amplitudes infinitely increase as B  – and they become 

narrower. However, when B  –1–, solitons do not vanish, but 

reduce to the algebraic soliton shown by line 5 in figure 3. The 

limiting formula for the algebraic soliton with B = –1 is:  

2 2

2 6
where , .

1 Ur

a
a a

a

U
U D

D




 
   



 

When   0 in equation (3), but sufficiently small,   << 1, the 

asymptotic approach based on the energy balance equation (8) 

can be developed again. This leads to the equation for the 

parameter B (cf. equation (9)): 
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The solution to this equation can be presented in the quadrature. 

In the KdV limit (B0  1+), equation (12) simplifies and reduces 

to the very same equation which was presented above. In another 

limit B0   equation (12) again simplifies and reduces to 
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Integrating this equation we obtain the implicit dependence B(): 
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Figure 3. Normalised Gardner soliton (4) with  > 0, for several values of 
parameter B. Line 1: B = 1.5; line 2: B = 2; line 3: B = 4; line 4: B = –2; 

line 5: B = –1 (the algebraic soliton). 

Here sign plus (minus) corresponds to the case of B  + (B  

–). This formula can be further simplified for B  B0; then we 

have B = B0(1 –  2  /4). In terms of soliton amplitude this gives 

U = U0(1 –  2/4). 

These formulae make sense only until |B|  1. When B is positive 

and decreasing from some value B0 > 1 to B = 1, the soliton 

gradually vanishes reducing first into the KdV soliton which 

completely vanishes then in finite time. Figure 4 illustrates this 

process in terms of soliton amplitude versus normalized time. 

Solid lines 1, 2 and 3 in this figure represent numerical solutions 

of equation (12) for different values of the parameter B0.  
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Figure 4. Bell-shaped soliton amplitude against time in normalized 

variables. Line 1: B0 = 1.01 (quasi-KdV soliton); line 2: B0 = 10; line 3: 
B0 = –10. Dashed line 4 represents the asymptotic dependence (14) for B0 

= 10. Dotted line 5 displays the limiting case U = U0(1 –  2/4) when B 

 B0; and dashed line 6 represents the asymptotic dependence (14) for B0 
= –10. 

The higher the parameter B0, the faster the soliton decays (cf. 

lines 1 for B0 = 1.01 and 2 for B0 = 10). The shortest life-time of 

the bell-shaped solitons with B0 > 1 can be roughly estimated 

from the limiting formula valid for B  B0. According to that 

formula, soliton amplitude turns to zero at  = ext  4/(  2), 

which is less than the extinction time of the KdV soliton in factor 

4/ 2. The analytical dependence for the KdV soliton with B0 = 1 

is indistinguishable from numerically obtained line 1 in figure 4. 



The situation is different when B0 < –1. In this case the adiabatic 

theory predicts that a soliton decays until its parameter B 

increases, but remains less than –1. However, when B becomes 

equal to –1, the soliton does not vanish, but transforms into the 

algebraic soliton. As has been shown [10], the algebraic soliton is 

structurally unstable, i.e. under small perturbations it reduces to 

the breather – non-stationary solitary wave with the oscillating 

internal structure [9]. Thus, under the action of Earth’s rotation 

the Gardner soliton of negative polarity decays and reduces to the 

algebraic soliton of amplitude Ulim = 2U0(1 – B0). Apparently the 

breather further decays, but its evolution should be studied 

separately.  

Dotted line 5 in figure 4 separates the decay lines of solitons with 

positive polarity (the corresponding lines lay to the right of line 

5) and solitons with negative polarity (their decay lines lay to the 

left of line 5). The decay lines of solitons with negative polarity 

terminate at the finite values Ulim when the parameter B becomes 

equal to –1 (see horizontal dashed line in figure 4 for B0 = –10). 

When equation (12) is solved for the parameter B, all other 

soliton parameters (U, V, ) can be readily obtained as functions 

of  by means of equations (5) and (6). As has been mentioned 

above, the soliton amplitude formally vanishes at a certain time, 

if B0 > 1, or reduces to Ulim, if B0 < –1. The corresponding 

extinction time can be found from equation (12) when B turns to 

1; then we have: 

                     
 

0

1 2

0

2

1 Ur 1
.

8 6 1
arctan

1

ext

B

B dB
B

B
B

B

 





 





            (15) 

Figure 5 shows the dependences of extinction time on B0. In the 

same figure we present a dependence of the extinction time for 

the fat solitons as per equation (10) (see line 1). As follows from 

this figure, line 2 represents just a continuous sequential of line 1, 

and the extinction time for the KdV soliton ext = 1 exactly 

corresponds to the point of matching of lines 1 and 2 (see the 

black dot between lines 1 and 2 in figure 5).  
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Figure 5. Extinction time for all types of Gardner solitons against the 

initial value of parameter B. Line 1: fat solitons when  = –1; line 2: bell-

shaped solitons with B0 > 1 when  = 1; line 3: bell-shaped solitons with 

B0 < –1 when  = 1. Black dot corresponds to the KdV soliton, and 

dashed horizontal line shows the asymptotic value of the extinction time 

4/ 2 for B0  . 

Thus, the adiabatic theory predicts that the extinction time for fat 

and table-top solitons (when  < 0) is always greater than the 

extinction time of the KdV soliton, whereas the extinction time of 

the bell-shaped solitons (when  > 0) is always less than the 

extinction time of the KdV soliton. Further, the characteristic 

time of bell-shaped solitons transformation into the algebraic 

soliton (when B0 < –1) is always less than the extinction time of 

bell-shaped solitons with B0 > 1 (cf. lines 2 and 3 in figure 5). 

When B0  , the extinction time of bell-shaped solitons 

asymptotically approach a limiting value 4/ 2, but from different 

sides (see the dashed horizontal line ext = 4/ 2 in figure 5 and 

lines 2 and 3 approaching to it). 

Conclusions 

Thus, the adiabatic decay of different types of internal wave 

solitons were calculated within the framework of the Gardner–

Ostrovsky equation. It was shown that at the early stage of 

evolution solitons gradually decay under the influence of weak 

Earth’ rotation which provides the additional dispersive term in 

the Gardner equation. The characteristic decay time was derived 

for the various types of solitons (table-top, fat, KdV and bell-

shaped solitons of different polarity), which can exist within the 

Gardner equation (see [1, 9] and references therein). One can 

expect that in the long-term evolution Gardner solitons 

eventually transform into the envelope solitons described by the 

nonlinear Schrödinger equation. The similar transformation of 

KdV solitons within the Ostrovsky equation is well-known [4, 5]. 

The long-term evolution of Gardner solitons has been studied in 

Ref. [13] for the particular cases; however a further study is still 

required to clarify the asymptotic state of soliton evolution as 

well as some other related issues. 
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